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2D Scalar Advection-Diffusion Equation

Advection velocity:
a = (a1, a2)T = |a|(cosφ, sinφ)T .

φ = advection direction.

κ ≡ 1 = diffusivity.

Why advection-diffusion?

Why a special finite element method (FEM)?
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2D Scalar Advection-Diffusion Equation

Advection velocity:
a = (a1, a2)T = |a|(cosφ, sinφ)T .

φ = advection direction.

κ ≡ 1 = diffusivity.

Describes many transport phenomena in fluid mechanics.

Usual scalar model for the more challenging Navier-Stokes equations.

Global Péclet number (L = length scale associated with Ω):

Pe =
rate of advection

rate of diffusion
=

L|a|
κ

= Re ·
{

Pr (thermal diffusion)
Sc (mass diffusion)
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Advection-Dominated Regime

Typical applications: flow
is advection dominated.

Figure 1: Galerkin Q1 solution
(color) vs. exact solution (black)
as Pe ↑ (Pe = 10→ 150)

Some classical remedies:

Stabilized FEM methods (SUPG,
GLS, USFEM): add weighted
residual (numerical diffusion) to
variational equation.
RFB, VMS, PUM: construct
conforming spaces that
incorporate knowledge of local
behavior of solution.
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Idea of DEM

First developed by Farhat et. al. in 2000 for the Helmholtz equation.

Idea.

“Enrich” the usual Galerkin polynomial field VP by the free-space solutions to
the governing homogeneous PDE Lu = 0.

uh = uP + uE ∈ VP ⊕ (VE\VP)

where
VE = span{u : Lu = 0}

Simple 1D Example:{
ux − uxx = 1 + x , x ∈ (0, 1)
u(0) = 0, u(1) = 1

Enrichments: uE
x − uE

xx = 0 ⇒ uE = C1 + C2e
x ⇒ VE = span{1, ex}

Galerkin FEM polynomials: VP
Ωe=(xj ,xj+1) = span

{
xj+1−x

h
,
x−xj
h

}
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More on DEM

Two variants of DEM: “pure DGM” vs. “true DEM”

DGM DEM

Vh VE VP ⊕ (VE\VP)

uh uE uP + uE

Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries

⇒ DEM is discontinuous by construction!
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What about Inter-Element Continuity?

Continuity across element boundaries is enforced weakly using Lagrange
multipliers λh ∈ Wh:

λh ≈ ∇uE
e · ne = −∇uE

e′ · ne′ on Γe,e′

but making sure we uphold the...

Discrete Babuška-Brezzi inf-sup condition1:{
# Lagrange multiplier

constraint equations
≤ # enrichment

equations

}

Rule of thumb to satisfy the Babuška-Brezzi inf-sup condition is to limit:

nλ =

⌊
nE

4

⌋
≡ max

{
n ∈ Z|n ≤ nE

4

}
nλ = # Lagrange multipliers per edge,
nE = # enrichment functions

1Necessary condition for generating a non-singular global discrete problem.
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Hybrid Variational Formulation of DEM

Strong form:

(S) :


Find u ∈ H1(Ω) such that
−∆u + a · ∇u = f , in Ω

u = g , on Γ = ∂Ω
ue − ue′ = 0 on Γint

Weak hybrid variational form:

(W ) :


Find (u, λ) ∈ V ×W such that:
a(v , u) + b(λ, v) = r(v)
b(µ, u) = −rd(µ)

holds ∀v ∈ V,∀µ ∈ W.

where

a(v , u) = (∇v + va,∇u)Ω̃

b(λ, v) =
∑
e

∑
e′<e

∫
Γe,e
′
λ(ve′−ve)dΓ+

∫
Γ

λv dΓ

Figure 2: Discretization of domain
into elements Ωe

Notation:

Ω̃ = ∪nel
e=1Ωe

Γ̃ = ∪nel
e=1Γe

Γe,e′ = Γe ∩ Γe′

Γint = ∪e′<e ∪nel
e=1 {Γ

e ∩ Γe′}
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Implementation & Computational Complexity

Element matrix problem (uncondensed): kPP kPE kPC

kEP kEE kEC

kCP kCE 0

 uP

uE

λh

 =

 rP

rE

rC
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Implementation & Computational Complexity

Element matrix problem (uncondensed): kPP kPE kPC

kEP kEE kEC

kCP kCE 0

 uP

uE

λh

 =

 rP

rE

rC



Statically-condensed True DEM Element:(
k̃PP k̃PC

k̃CP k̃CC

)(
uP

λh

)
=

(
r̃P

r̃C

)

Statically-condensed Pure DGM Element:

−kCE(kEE)−1kECλh = rC − kCE(kEE)−1rE,
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Angle-Parametrized Enrichment Functions for 2D
Advection-Diffusion

Derived by solving LuE = a · ∇uE −∆uE = 0 analytically (e.g., separation
of variables).

uE (x; θi ) = e
Pe
(

cosφ+cos θi
2

)
(x−xr,i )e

Pe
(

sinφ+sin θi
2

)
(y−yr,i ) (1)

Θu ≡ {θi}n
E

i=1 ∈ [0, 2π) = set of angles specifying VE

(xr,i , yr,i ) = reference point for uE
i

φ ∈ [0, 2π) = advection direction

The parametrization with respect to θi in (2) is non-trivial!

Enrichment functions are now specified by a set of “flow directions”.

Without this parametrization, systematic element design would not be
possible!
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Plots of Enrichment Functions for Some Angles θi ∈ [0, 2π)

θi = 0 θi = π
2

θi = π θi = 3π
2

Figure 3: Plots of enrichment function uE (x; θi ) for several values of θi (φ = 0) 10/ 31
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What about the Lagrange Multiplier Approximations?
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Figure 4: Straight edge Γij

oriented at angle αij ∈ [0, 2π)

Trivial to compute given exponential enrichments:

λh(s)|Γij ≈ ∇uE · n|Γe,e′
= e

{
|a|
2 [cos(φ−αij )+cos(θk−αij )](s−s ijr )

}

Non-trivial to satisfy inf-sup condition: the set Θu

that defines VE typically leads to too many
Lagrange multiplier dofs!
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Trivial to compute given exponential enrichments:

λh(s)|Γij ≈ ∇uE · n|Γe,e′
= e

{
|a|
2 [cos(φ−αij )+cos(θλk −α

ij )](s−s ijr )
}

Non-trivial to satisfy inf-sup condition: the set Θu

that defines VE typically leads to too many
Lagrange multiplier dofs!

Select Θλ 6⊂ Θu (set to define Wh) independently

of Θu, with card{Θλ} ≡ nλ =
⌊

nE

4

⌋
.

Θλ = {θλk }n
λ

k=1 = set of angles that specifies the Lagrange multipliers
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Extension to the Variable-Coefficient Advection-Diffusion
Equation

a(x) ≈ ae =constant inside each element Ωe as h→ 0:

{a(x) · ∇u − κ∆u = f (x) in Ω} ≈ ∪nel
e {ae · ∇u − κ∆u = f (x) in Ωe}

Define VE within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.

uE
e (x; θei ) = e

|ae |
2κ

(cosφe+cos θei )(x−xer,i )e
|ae |
2κ

(sinφe+sin θei )(y−yer,i ) ∈ VE
e , VE = ∪eVE

e

Wh
e,e′ ≡ span

{
∇cEe,e′(x; θλ

e,e′

i )|Γe,e′ · n
e,e′ : card{Θλ

e,e′} =
⌊

nE

4

⌋}
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Mesh Independent Element Design Procedure

Algorithm 1. “Build your own DEM element”

Fix nE ∈ N (the desired number of angles defining VE ).

Select a set of nE distinct angles {θk}n
E

k=1 between [0, 2π).

Let Θu = φ+ {θi}n
E

i=1.
Define the enrichment functions by:

uE (x; Θu) = e
Pe
2 (cosφ+cos Θu)(x−xr,i )e

Pe
2 (sinφ+sin Θu)(y−yr,i )

Let nλ =
⌊
nE

4

⌋
.

Choose a set of nλ distinct angles {βλk }n
λ

k=1 between [0, π).
for each edge Γij ∈ Γint having slope αij

Define the Lagrange multipliers approximations on Γe,e′ by:

λh(s)|Γij = e
|a|
2 [cos(φ−αij )+cos βλk ](s−sr,k )

end for
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Some DGM/DEM Elements

Notation

DGM Element: Q − nE − nλ

DEM Element: Q − nE − nλ+ ≡ [Q − nE − nλ] ∪ [Q1]

‘Q ′: Quadrilateral
nE : Number of Enrichment Functions
nλ: Number of Lagrange Multipliers per Edge
Q1: Galerkin Bilinear Quadrilateral Element

Name nE Θu nλ Θλ

Q − 4− 1 4 φ+
{

mπ
2

: m = 0, ..., 3
}

1 φ
Q − 8− 2 8 φ+

{
mπ

4
: m = 0, ..., 7

}
2 αij + {0, π

2
}

Q − 12− 3 12 φ+
{

mπ
6

: m = 0, ..., 11
}

3 αij + {π
4
, π

2
, 3π

4
}

Q − 16− 4 16 φ+
{

mπ
8

: m = 0, ..., 15
}

4 αij + {0, π
4
, π

2
, 3π

4
}

Q − 5− 1+ 5 φ+
{

2mπ
5

: m = 0, ..., 4
}

1 φ− π
Q − 9− 2+ 9 φ+

{
2mπ

9
: m = 0, ..., 8

}
2 αij + {0, π

2
}

Q − 13− 3+ 13 φ+
{

2mπ
13

: m = 0, ..., 12
}

3 αij + {π
4
, π

2
, 3π

4
}

Q − 17− 4+ 17 φ+
{

2mπ
17

: m = 0, ..., 16
}

4 αij + {0, π
4
, π

2
, 3π

4
}
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Illustration of the Θu and Θλ for the DGM Q − 8− 2
Element
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Figure 5: Illustration of the sets Θu and Θλ that define the Q − 8− 2 element
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Computational Complexity

Table 1: Computational complexities of some DGM, DEM and Galerkin
elements.

Element Asymptotic # of dofs
Stencil width for

uniform n × n mesh

Q1 nel 9

Q2 3nel 21

Q3 5nel 33

Q4 7nel 45

Q − 4− 1 2nel 7

Q − 8− 2 4nel 14

Q − 12− 3 6nel 21

Q − 16− 4 8nel 28

Q − 5− 1+ 3nel 21

Q − 9− 2+ 5nel 33

Q − 13− 3+ 7nel 45

Q − 17− 4+ 9nel 57
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Homogeneous Boundary Layer Problem

Ω = (0, 1)× (0, 1), f = 0.

Homogeneous problem ⇒ pure DGM elements
sufficient.

a = Pe
(

cosφ sinφ
)
.

Dirichlet boundary conditions are specified on
Γ such that the exact solution to the BVP is
given by

uex (x;φ, ψ) =
e
Pe
2
{[cosφ+cosψ](x−1)+[sinφ+sinψ](y−1)} − 1

e−
Pe
2

[cosφ+cosψ+sinφ+sinψ] − 1

ψ ∈ [0, 2π) : some flow direction (not
necessarily aligned with φ).

Solution exhibits a sharp exponential boundary
layer in the advection direction φ, whose
gradient is a function of the Péclet number.

Figure 6: φ = ψ = 0

Figure 7: φ = π/7,ψ = 0
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Flow Aligned with Advection Direction (φ = ψ)

uex ∈ VE for all DGM elements, for all advection directions φ here.

Therefore one would expect these elements to capture the exact
solution to machine precision – but only provided ∇uex · n ∈ Wh.

Table 2: Relative L2(Ω) errors, ≈ 400 dofs, Pe = 103, uniform mesh: Galerkin vs. DGM elts.

φ/π Q1 Q − 4− 1 Q2 Q − 8− 2

0 5.77× 10−1 3.43× 10−14 4.33× 10−1 2.22× 10−10

1/6 2.53× 10−2 1.24× 10−15 1.49× 10−2 8.38× 10−4

1/4 2.62× 10−2 3.19× 10−14 1.53× 10−2 5.62× 10−6

φ/π Q3 Q − 12− 3 Q4 Q − 16− 4

0 3.68× 10−1 5.78× 10−13 2.44× 10−1 9.75× 10−10

1/6 1.21× 10−2 5.50× 10−6 9.47× 10−3 3.31× 10−6

1/4 1.24× 10−2 4.36× 10−14 9.81× 10−3 1.27× 10−12
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Flow not Aligned with Advection Direction (φ 6= ψ)

Fix φ = π/7, vary ψ.

Can show that uex /∈ VE for any DGM elements and advection
directions tested here.

Table 3: Relative L2(Ω) errors, ≈ 1600 dofs, unstructured mesh, φ = π/7, Pe = 103: Galerkin

vs. DGM elts.

ψ/π Q1 Q − 4− 1 Q2 Q − 8− 2

0 1.45× 10−2 1.65× 10−3 5.92× 10−3 1.79× 10−3

1/4 1.52× 10−2 9.38× 10−4 6.06× 10−3 2.54× 10−4

1/2 1.51× 10−2 9.23× 10−4 5.97× 10−3 2.12× 10−4

ψ/π Q3 Q − 12− 3 Q4 Q − 16− 4

0 4.34× 10−3 1.10× 10−4 3.23× 10−3 2.30× 10−5

1/4 4.46× 10−3 1.23× 10−5 3.29× 10−3 8.82× 10−7

1/2 4.36× 10−3 1.11× 10−5 3.18× 10−3 1.59× 10−6
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Solution Plots
Figure 8: φ = ψ = 0, Pe = 103, ≈ 1600 dofs

Q3

Q − 12 − 3

Figure 9: φ = π/7, ψ = 0, Pe = 105, ≈ 1600 dofs

Q3

Q − 12 − 3
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Convergence Analysis

Figure 10: Convergence Rates (φ = π/7, ψ = 0, Pe = 102, unstructured mesh)
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Double Ramp Problem on an L–Shaped Domain

-

6

Ωu = 0

0.5

1

u = 0

u = 0

u = 0

u = 0

u = 0

1

Homogeneous Dirichlet boundary
conditions are prescribed on all six
sides of L–shaped domain Ω

Advection direction: φ = 0

Source: f = 1

Strong outflow boundary layer along
the line x = 1

Two crosswind boundary layers along
y = 0 and y = 1

A crosswind internal layer along
y = 0.5
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Solutions Plots: Galerkin vs. DGM vs. DEM Elements

Figure 11: L–shaped double ramp problem solutions: Pe = 103, 1200 elts.

Q3 Q − 12 − 3 Q − 13 − 3+

No oscillations can be seen in the computed DGM and DEM
solutions.

Would expect: DEM elements to outperform DGM elements for this
inhomogeneous problem.

In fact: DGM elements experience some difficulty along the y = 0.5
line, the location of the crosswind internal layer.
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Cross Sectional Solution Plots

Figure 12: Solution along the line x = 0.9 with 1200 elts.

Galerkin DGM DEM

Figure 13: Solution along the line y = 0.5 with 1200 elts.

Galerkin DGM DEM
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Relative Errors

Table 4: L2(Ω) errors relative to a reference solution∗: uniform mesh, Pe = 103

# elements Q2 Q − 8− 2 Q − 9− 2+

300 2.72× 10−1 1.19× 10−1 4.11× 10−2

1200 1.23× 10−1 6.07× 10−2 8.47× 10−3

4800 5.26× 10−2 2.81× 10−2 1.65× 10−3

10, 800 2.92× 10−2 1.54× 10−2 7.43× 10−4

# elements Q3 Q − 12− 3 Q − 13− 3+

300 1.49× 10−1 1.11× 10−1 2.80× 10−2

1200 6.57× 10−2 5.00× 10−2 4.71× 10−3

4800 2.36× 10−2 1.02× 10−2 8.24× 10−4

10, 800 1.08× 10−2 4.54× 10−3 9.75× 10−5

# elements Q4 Q − 16− 4 Q − 17− 4+

300 9.58× 10−2 8.32× 10−2 2.16× 10−2

1200 3.78× 10−2 1.33× 10−2 2.94× 10−3

4800 1.03× 10−2 9.17× 10−3 1.26× 10−4

10, 800 3.70× 10−3 4.92× 10−4 2.12× 10−5

* Since an analytical solution to this problem is not available, in computing the relative error,
we use in place of the exact solution a reference solution, computed using a Galerkin Q6

polynomial element on a 43, 200 = 3 · (120× 120) element mesh.
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Variable-Coefficient Numerical Example: Thermal
Boundary Layer Problem

Ω = (0, 1)× (0, 1), f = 0.

aT (x) = Pe
(

y 0
)

u(x) represents temperature.

Model for formation of a pair of
thermal boundary layers along the
lower and outflow boundaries of a
fully developed shear flow between
two parallel plates, with the upper
plate moving to the right, and the
lower plate fixed.

Main difficulties:

Outflow boundary layer at x = 1.
Parabolic layer along y = 0.

-

6

�
�
�
�
�
�
�
�
�
�
�

-

-

-
aT = Pe

(
y 0

)
-

u = 1

1

u = y

u = 0

u = 1

1
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Solution Plots for Pe = 104, uniform 30× 30 mesh (Front
Views)

Q1 Q − 4 − 1

Q2 Q − 8 − 2
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Solution Plots for Pe = 104, uniform 30× 30 mesh (Rear
Views)

Q1 Q − 4 − 1

Q2 Q − 8 − 2
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Relative Errors

Table 5: L2(Ω) errors relative to a reference solution∗ for Pe ≤ 104

Pe n Q1 Q − 4− 1 Q2 Q − 8− 2

103 15 1.17× 10−1 1.83× 10−2 5.14× 10−2 1.62× 10−2

30 5.79× 10−2 8.77× 10−3 2.22× 10−2 7.64× 10−3

104 15 2.61× 100 2.13× 10−2 5.93× 10−1 2.59× 10−2

30 4.61× 10−1 1.09× 10−2 1.10× 10−1 1.09× 10−2

Table 6: L2(Ω) errors relative to a reference solution∗ for Pe ≥ 105 with ≈ 800
dofs

Pe Q1 Q − 4− 1

105 5.71× 100 4.56× 10−2

106 5.40× 101 1.47× 10−1

* Since an analytical solution to this problem is not available, in computing the relative error,
we use in place of the exact solution a reference solution, computed using a Galerkin Q6

polynomial element on a 60× 60 element mesh.
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Conclusions & Ongoing Work

For all test problems, the enriched elements outperform their
Galerkin and stabilized Galerkin counterparts of comparable
computational complexity by at least one (and sometimes many)
orders of magnitude difference on unstructured meshes.

For Pe = 103, to achieve a 0.1% level of relative error:

Q − 8− 2 and Q − 9− 2+ elements: reduce the dof requirement of
the Q2 element by a factor between 4.5 and 5.
Q − 12− 3 and Q − 13− 3+ elements: reduce the dof requirement
of the Q3 element by a factor of between 14 and 15.
Q − 16− 4 and Q − 17− 4+ elements: reduce the dof requirement
of the Q4 element by a factor of between 15 and 15.2.

In a high Péclet regime, DGM and DEM solutions are almost
completely oscillation-free, in contrast with the Galerkin solutions.

Ongoing/future work:

DEM for non-linear unsteady problems (e.g., viscous Burgers
equation).
Projection method-based DEM for incompressible Navier-Stokes.
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Questions?

Recent publications (www.stanford.edu/~irinak/pubs.html):

C. Farhat, I. Kalashnikova, R. Tezaur. A Higher-Order
Discontinuous Enrichment Method for the Solution of High Péclet
Advection-Diffusion Problems on Unstructured Meshes. Int. J.
Numer. Meth. Engng. (accepted June 2009).

I. Kalashnikova, C. Farhat, R. Tezaur. A Discontinuous Enrichment
Method for the Solution of Advection-Diffusion Problems in high
Péclet Number Regimes. Fin. El. Anal. Des. 45 (2009) 238-250.

Thank you!
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DEM for the Viscous Burgers Equation (“Hot off the
Processor!”)

Non-linear version of advection-diffusion equation = viscous Burgers
equation:

ut + uux − κuxx = 0

Semi-discrete form of PDE (with Euler scheme) at time n:
un+1 − un

∆t
+ unun+1

x − κun+1
xx = 0 (2)
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DEM for the Viscous Burgers Equation (“Hot off the
Processor!”)

Non-linear version of advection-diffusion equation = viscous Burgers
equation:

ut + uux − κuxx = 0

Semi-discrete form of PDE (with Euler scheme) at time n:

��
��
�un+1 − un

∆t
+ unun+1

x − κun+1
xx = 0 (2)

Enrichment functions inside each element at time step n are the
free-space solutions to steady analogs of (2):

VE ,n = span{un(x) : un−1(x̄e)un
x − κun

xx = 0, x ∈ Ωe}

where

VE ,n
e = enrichment field inside element Ωe at time step n

x̄e ≡ midpoint of element Ωe
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Matrix Problem and Implementation for Unsteady
Non-Linear DEM (Pure DGM Element)

Element-level semi-discrete matrix problem:(
mEE 0

0 0

)(
u̇E

λ̇h

)
+

(
kEE(uE) kEC

kCE 0

)(
uE

λh

)
=

(
0
0

)
Apply time-integration scheme to obtain fully-discrete, element-level
problem:(

mEE + ∆tkEE(uE ,n) ∆tkEC

∆tkCE 0

)(
uE,n+1

λh,n+1

)
=

(
mEE 0

0 0

)(
uE,n

λh,n

)
Eliminate enrichment dofs uE,n+1 at the element-level by a static
condensation:

∆tkCE[mEE+∆tkEE(uE,n)]−1kECλh,n+1 = kCE[mEE+∆tkEE(uE,n)]−1mEEuE,n
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A Non-Linear BVP with a Weak Shock

 ut + uux − κuxx = 0, in Ω ≡ (0, 1)
u(0, t) = u(1, t) = 0
u(x , 0) = sin(2πx), in Ω ≡ (0, 1)

(3)

Can show using method of characteristics that solution to (3)
exhibits a weak shock at the point xs ≡ 0.5 at time Ts ≡ 1

2π in the
limit as κ→ 0 (Pe →∞).

Standard finite elements run into trouble in the vicinity of the shock:
produce central-difference type spurious, non-physical oscillations
(next slide).

DGM/DEM elements to be tested:

Element Enrichment Functions

Q − 3− 1 uE ,n
1 = eun−1(x̄e)(x−xe

r ), uE ,n
2 = 1, uE ,n

3 = sin(2πx)

Q − 2− 1+ uE ,n
1 = eun−1(x̄e)(x−xe

r ), uE ,n
2 = x2
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Preliminary Numerical Results (κ = 10−3, T = 0.5,
∆t = 0.05, 20× 20 uniform mesh)

Q1 Q2

Q − 3 − 1 Q − 2 − 1+

Very promising: DEM solutions are oscillation free!
35/ 31


	Motivation
	Advection-Diffusion Equation
	High Péclet Regime

	Discontinuous Enrichment Method (DEM)
	DEM for 2D Advection-Diffusion
	Enrichment Bases
	Lagrange Multipliers
	Variable-Coefficient Problems
	Element Design
	Computational Properties

	Numerical Experiments
	Example 1
	Example 2
	Example 3

	Conclusions & Ongoing Work
	Appendix

